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Abstract

Computer simulations of polymer models have contributed strongly to our understanding of the glass transition in polymer melts. The

ability of the simulation to provide information on experimentally not directly accessible quantities like the detailed spatial arrangement of

the particles allows for stringent tests of theoretical concepts about the glass transition and provides additional insight for the interpretation of

experimental data. Comparing coarse-grained simulations of a bead-spring model and chemically realistic simulations of 1,4-polybutadiene

the importance of dihedral barriers for the glass transition phenomenon can be elucidated.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since a long time polymers have played a central role in

studies of the structural glass transition because on the one

hand, metastable equilibrium of the supercooled melt is not

hard to obtain (for many polymers we do not even know

whether there exists a crystalline ground state at all), and on

the other hand understanding the properties of glassy

polymers is of high technological relevance.

In the last 15 years the focus in the studies of the glass

transition has shifted somewhat. Many of the early attempts

to understand the glass transition phenomenon were

centered around the Kauzmann paradox of a seemingly

vanishing excess entropy of the supercooled melt with

respect to the crystal. For polymers this phenomenon could

be reproduced within the Gibbs–DiMarzio theory [1] which

predicts many experimentally observable facts (thermo-

dynamic derivatives of the entropy), however, only produces

an entropy catastrophe due to inaccurate approximations [2].

A view of the glass transition as a purely kinetic

phenomenon has been advocated by mode-coupling theory

(MCT) which furthermore traces the transition to a

crossover in relaxation behavior in the supercooled fluid

which occurs about 20% above the calorimetric glass

transition (for fragile glass formers which follow a Vogel–

Fulcher–Tamman law for the temperature dependence of

the viscosity). This crossover happens on microscopic to

mesoscopic length and time scales and is therefore well

observable on the scales of, for instance, neutron scattering

experiments [3] and computer simulations [4]. Molecular

dynamics (MD) simulations of a bead-spring model have

been analyzed in great detail within the predictions of MCT

and we will present some of the results in Section 2.

Coarse-grained polymer models like the bead-spring

model, however, lack a physical property that is determining

much of the relaxation behavior in real polymer melts which

is hindered rotation around chemical bonds described

through dihedral potentials. In Section 3 we will discuss

MD simulations of 1,4-polybutadiene with and without

taking the dihedral potential into account to find out how

these potentials influence the local dynamics in polymer

melts. Section 4 will finally present some conclusions.

2. The cage effect in simulations of a bead-spring model

This model represents the polymers by Lennard–Jones

spheres bonded by a finitely extendable nonlinear spring [5].

One can kinetically hinder crystallization in the course of

the simulation by making the equilibrium distance between

bonded monomers (in the following all quantities will be

given in Lennard–Jones units), bmin ¼ 0:96; different

from the equilibrium distance of non-bonded monomers,
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rmin ¼ 1:13: Chains of length N ¼ 10 were studied and a

melt of such chains was cooled down along an isobar, where

equilibration was performed in an NpT simulation and the

dynamics was then studied in an NVT simulation to avoid

spurious effects of the barostat. Since the characteristic ratio

of these chains is close to one, N ¼ 10 corresponds to about

nine statistical segments, a chain length which is just long

enough to display Gaussian chain statistics typical for

polymers in the melt.

The mode-coupling scenario for the glass transition in

this model has been studied in great detail [6–11] and I will

here only discuss a few selected results. From the behavior

of the static structure factor of the melt upon cooling one can

infer that the structure stays amorphous with a first sharp

diffraction peak (amorphous halo) at q ¼ 6:9 [7]. This peak

increases in height and sharpens and slightly shifts

following the volume expansion. A first phenomenological

impression of the slowing down of the relaxation processes

can be obtained by looking at the temperature dependence

of the center of mass diffusion coefficient of the chains. For

temperatures below 1 (in units of the Lennard–Jones energy

e) it can be fitted with a Vogel–Fulcher law: DðTÞ ¼ Dð1Þ

exp{ 2 E=ðT 2 T0Þ} with a seemingly vanishing diffusion

coefficient at the Vogel–Fulcher temperature T0 ¼ 0:35: On

the other hand, one can start from a crystalline ground state

at T ¼ 0 where all chains are extended parallel to the z-

direction and the end monomers of the chains are located on

a tetragonal lattice with an additional base atom in the center

[12]. Upon heating this structure slowly, one observes a

melting (see Fig. 1) at a temperature Tm ¼ 0:75 ^ 0:05: The

temperature regime between the Vogel–Fulcher tempera-

ture T0 ¼ 0:35 and the melting temperature Tm ¼ 0:75

constitutes the supercooled fluid regime of this model.

Within this temperature window the mode-coupling theory

(MCT) [13] of the glass transition predicts the cage effect to

become dominant for the slowing down of the relaxation.

This caging is predicted to lead to a two step decay of

correlation functions with an intermediate plateau regime

called b-regime (which should, however, not be confused

with the Johari–Goldstein b-process) where the atoms are

still confined in their neighbor cages and a long time

structural relaxation (a process), which is predicted to obey

time–temperature superposition.

In Fig. 2 we show the incoherent intermediate scattering

function at the momentum transfer of the amorphous halo in

the supercooled melt. The two step decay is clearly visible

and the whole curve can be split into a short time ballistic

and harmonic motion, where the dynamic Gaussian

assumption Sðq; tÞ ¼ exp{ 2 q2g0ðtÞ=6}; g0 being the mono-

mer mean square displacement, still works, an MCT b-

regime and the long time structural decay given by a

Kohlrausch–William–Watts (KWW) stretched exponential

function. On approaching the so-called MCT critical

temperature Tc the idealized version of the theory predicts

that the temporal extend of the plateau regime diverges and

the structural relaxation arrests completely. Close to Tc the

a time-scale should show a power law divergence ta /

ðT 2 TcÞ
2g; the time-scale of the plateau should diverge as

te / ðT 2 TcÞ
22a and the amplitudes of the von Schweidler

law Sðq; tÞ ¼ f c
q 2 hqðTÞt

b should vanish as ðT 2 TcÞ
1=2:

Fig. 3 shows that the bead-spring polymer [5,7] model is

nicely consistent with all these predictions with a Tc ¼ 0:45:

Fig. 1. Mean square displacements of the atoms in the crystalline

configuration along the chain axis ðzÞ and perpendicular to it ðxyÞ: The

temperature is T ¼ 0:77:

Fig. 2. Intermediate incoherent scattering function at the first sharp

diffraction peak for a temperature in the supercooled melt regime. The first

part of the decay is described by the mean square displacements g0ðtÞ

invoking the dynamic Gaussian approximation. Then the MCT b-correlator

describes the plateau and finally the KWW stretched exponential fits the

long-time decay.

Fig. 3. Test of the MCT predictions for the b-scaling giving Tc ¼ 0:45:
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This also holds for single-chain coherent or melt coherent

scattering [10].

l ¼
Gð1 2 aÞ2

Gð1 2 2aÞ
¼

Gð1 þ bÞ2

Gð1 þ 2bÞ
g ¼

1

2a
þ

1

2b
ð1Þ

The measured exponent parameter l ¼ 0:635 which

determines all other exponents according to Eq. (1), does

not depend on the thermodynamic path used to approach the

transition [8]. The polymer typical melt dynamics as

described by the Rouse model is enslaved to the caging

process and follows the a-scaling [9]. This is under-

standable through Fig. 4 which shows a mean square

displacement master curve obtained from plotting the mean

squared displacement of center monomers at different

temperatures versus time times the center of mass diffusion

coefficient of the chains.

The caging occurs on a length scale which is much

smaller than the bond length of this model. On these length

scales the monomers do not really feel the connectivity

constraint of being part of a polymer. Therefore, the

behavior is also very similar to what was observed in the

MD simulation of a binary LJ mixture by Kob et al. [14],

even to the point that the mode-coupling critical tempera-

tures are almost identical (Tc ¼ 0:45 versus 0.435 for the

Lennard–Jones mixture) between the two very different

models. The late part of the decay out of the plateau,

however, is influenced by connectivity and instead of

crossing over to a free diffusion behavior like in the LJ

mixture, for the polymers the Rouse mode dominated

regime sets in with an exponent 0.63 which is smaller than

the von Schweidler exponent b ¼ 0:75 of the plateau decay.

This behavior has recently also been incorporated into a

mode-coupling theory by extendeding it to not only include

the melt structure factor but partial structure factors SnmðqÞ

for the correlations between monomers at different positions

n and m along one chain [15], taking connectivity into

account in this way.

But can it really be true that connectivity is just another

way to prevent crystallization and all molecular details do

not matter for the actual caging process in a polymer melt?

Considering the fact that we are not treating large-scale

universal phenomena with the cage effect this seems rather

unlikely.

3. Dihedral barriers and caging dynamics

One of the experimentally best studied glass forming

polymers is 1,4-poly-butadiene (also including a varying

degree of vinyl content). There have been some early MD

studies of chemically realistic models of polybutadiene

melts [16–18]. To improve on these simulations to be able

to perform a parameter free quantitative comparison with

experiment we needed a highly optimized, quantum

chemistry based force-field. This was developed in

Ref. [20] and later tested at high temperatures against

neutron scattering results [21,22], nuclear magnetic reson-

ance results on spin lattice relaxation times [21,23] and

dielectric data [24].

The calculation of the dielectric response of a 1,4-

polybutadiene melt may serve to illustrate one of the strong

points of the computer simulation approach. Dielectric

measurements are a q ¼ 0 technique, i.e., they measure the

response of the whole sample volume. To assign molecular

motions underlying the observed relaxation is an involved

process relying heavily on models for the actual motion of

the polymer. The simulations for 1,4-polybutadiene [24]

were performed without including interactions due to the

small partial charges on the molecule. It is therefore

expected that a calculation of the dipole moment by

reinserting charges into the stored trajectories will not

display correlations between the dipole moments of

different chains, so that the average squared dipole moment

of the box is just the sum of the squared dipole moments of

the individual chains. Further comparison with the time

scales of different Rouse modes, which measure the typical

reorientation time for segments of varying length (depend-

ing on mode number) of the chain, showed, that the

dielectric measurement in this case is observing the

reorientational motion of a chain segment of about six

backbone bonds, which is about a Kuhn segment length of

the chain. The relaxation map shown in Fig. 5 shows that

the simulation data are in good quantitative agreement

with experimental information suggesting that also in the

experiment the observed relaxing quantity is the dipole

moment of a Kuhn segment.

The excellent agreement between simulation and experi-

ment for the local reorientational motion as observed in

dielectrics or NMR experiments relies strongly on the

quality of the dihedral force field used in the simulation.

These relaxation processes are exponentially sensitive to the

Fig. 4. Master curve of the mean squared monomer displacement of center

monomers of the bead-spring chains compared to that of a binary Lennard–

Jones mixture [14]. The inset shows the construction procedure before

removing the parts not on the master curve.
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values of the barriers in the dihedral potentials. It is natural

to ask what the influence of these barriers on the mean

square displacement behavior of the monomers is, similar to

the study in Ref. [19] where the effect of the barrier heights

in a polyethylene model on the glass transition temperature

in the simulation was studied. To investigate this, we

compare the chemically realistic simulation of 1,4-poly-

butadiene (CRC) with another one, where we turned off all

dihedral potentials (FRC, freely rotating chain model).

Polybutadiene is a special case, in that this has no influence

on the melt structure (as shown in Fig. 6) or on the single

chain structure factor [25]. This can be traced to the

symmetry (all isomers are iso-energetic) of the dihedral

potentials in this polymer.

In MCT the structural relaxation is completely deter-

mined through the structure factors. All coupling constants

between different modes are functionals of these static pair

correlation functions. Consequently, these two polymer

models should show the same dynamics, if MCT were

applicable to them. In Fig. 7 we compare mean square

displacements of the CH2 groups along the chain between

the two models for several temperatures well above the

mode-coupling Tc of PBD which is 220 K. Clearly, the CRC

model develops a well-defined plateau regime which is

reminiscent of the caging effect discussed for the bead-

spring model in the previous section. At the same

temperature, however, the FRC model shows no indication

of this plateau so that this ‘caging’ can not be traced to the

intermolecular packing. It is due to the dihedral barriers.

The short time vibrational motion is damped out on the time

scale of 1 ps for typical carbon-based polymers. At high

temperatures thermal activation is fast enough, so that the

typical time scale between jumps over dihedral barriers is of

the same size. With decreasing temperature this time-scale

increases in an Arrhenius fashion [23] and the relaxation is

halted until a thermal activation happens. The dihedral

potentials, which depend on the position of four adjacent

atoms induce four-body correlations, which do not factorize

into two-body correlations as assumed in the closure of the

MCT equations. Consequently, one of the central results of

MCT, the factorization theorem for the b-relaxation (i.e. the

von Schweidler law discussed above) does not hold for this

plateau regime [25].

4. Conclusions

We have discussed in this contribution several results

from the computer simulation efforts of the last decade to

help understand the glass transition in polymer melts. As

most polymers do not crystallize easily they could be

studied in (meta-)stable equilibrium since a long time and

much is known about the phenomenology of the polymer

glass transition.

The view of the glass transition as a purely kinetic

phenomenon nowadays is mainly connected with the mode-

coupling theory of the glass transition. Although this theory

was developed for simple liquids, experimentally it was

mostly tested on molecular or polymeric liquids, with the

Fig. 5. Relaxation map of the structural relaxation in 1,4-polybutadiene as

observed in dielectric spectroscopy. The experiments observe the dielectric

a-relaxation whereas the simulations are in the temperature window of the

combined a–b process.

Fig. 6. Melt structure factor for the chemically realistic model of 1,4-

polybutadiene (CRC) and the freely rotating chain model (FRC).

Fig. 7. Mean square displacements of CH2 groups compared between the

CRC and the FRC model at high temperatures.
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exception of sterically stabilized colloids. We know in

polymer physics that all the universal phenomena of this

class of materials rely on the presence of excluded volume

and chain connectivity. Therefore, a MD simulation of a

simple bead spring model was performed to study the

applicability of MCT to the polymer glass transition. Within

the supercooled fluid regime of this model a temperature

interval could be identified, where a two step decay of

correlation functions developed. The features of this two

step decay in the plateau regime (b-regime) and the long-

time decay (a-relaxation) were nicely consistent with the

predictions of MCT. Since the caging happened on length

scales much shorter than the bond length in this coarse-

grained model, the connectivity played no important role

for the cage effect and the polymer dynamics as described

by the Rouse model simply followed the scaling of the a-

process. The influence of connectivity on the late stages of

the b-regime and the a-process could recently also be

included into a mode-coupling approach.

In real polymers, however, there exists a strong influence

of dihedral barriers on the qualitative and quantitative

behavior of relaxation processes. A chemically realistic

model of 1,4-polybutadiene with a carefully optimized,

quantum chemistry based force field is able to quantitatively

reproduce the relaxation behavior of this polymer in the

melt. In a computer simulation one can selectively change

aspects of the model to look at their importance for a given

phenomenon. In this spirit a freely rotating chain model of

PBD (where all dihedral potentials were switched off) and a

chemically realistic model of PBD were studied. Even far

above the glass transition temperature the chemically

realistic model of PBD shows a plateau regime in the

mean squared monomer displacements, whereas the FRC

model at the same temperature shows no such effect. Since

the structural properties of the two models as quantified by

the melt and chain structure factors are identical, this can

not be rationalized within a mode-coupling approach, where

the dynamics is uniquely determined through these static

two-body correlation functions. Dihedral potentials describe

four-body correlations, which do not factorize into two-

body correlations. The barriers in the potential lead to a

slowing down, because further relaxation can only occur

through thermal activation. This is similar to the cage

process, although of different physical origin. It has also

been shown that in the studied temperature range the

temperature dependence of the mean rate of torsional

transitions is given by the rotational barrier height alone

[23], so that there are no discernible packing effects on the

barrier crossing yet at this temperture. This may change at

lower temperatures and it is an interesing whether there will

be a crossover from mainly intramolecular caging at high

temperatures to packing dominated slowing down at low

temperatures. Existing claims in the literature not with-

standing [26], it remains to be seen to what degree MCT will

be applicable to the relaxation behavior at lower

temperatures.
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